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d.f in a relation S between G and G* that fornalises the notion of C’S.’
si slating C with S—fold loss of space efficiency and T—fold loss of tins

efficiency , and prove that if G s , , G*, there C ba. a stat nts end C’ 1s

structured , then in the worst case T + 101210$2 S ~ 1og~,n + O(log2log~n).
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In a previous paper Cl], we made precise sons intuitive observ ations

concerning the efficiency of structured progra ms by defining a co~ dnaeoria.l

relation that correspo nds to th. notion of wtif ov~n simulation between programs.

Informally, we say that a progra m G* uniformly simulates a progr am C if C’

carries out the computation of C (and possib ly addi tional computation which

might be regarded as “bookk eeping”) in such a way that the space—tim. efficiency

of C is degraqied by a factor that i. independent of the sise of G. The main

results of (13 indicate that the non—existence of uniform simulations among many

well-known classes of control structur se is dus to the combinatorial aspects of

program struc ture and is not at all related to such detai ls of program organi—

zat ton as choice of data structure s or limitations on the form of Boolean

expressions.

Indeed , the main resul t of (1) (Theorem 5.1) provides a non—trivial lower

bound on the loss of space—t ime efficiency in ~~y structured simulation of a

goto progr am . This shor t note extends that result , improving the space—time

inequality of (1 , Theorem 5.1] by an exponential. Thus we now show that there

are goto programs with n state ments such that ,f or any structured simulation,

either:

1) the simulation rims at leastt
for .  -

~~~te ~~ct on

~ ~ s.~~~ Ei
(2

times as slow as the orig inal pro gra m, •1.s ~

‘ 

or 
03 “: “

c2n I~g~IIøM4 ~~~2) the simulation has at least 2 statemen ts . -~:

We use C1~ c2, c3 to denote positive constants.

4
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I.e. , there are goto progr~~~ that can only be simulated by either vary s low
or vary Zaa~. structured programs.

In th. sequel , we will concentrate on the combinatorial theorem that
echi.ve~ these bounds. The progra ing language significance of the graphs
and relat ions studied here is discussed extensiv.jy In (1).

2. Pre1i~i~~riee

A dir.at. d gisrrph C is an ordered pair CV , E) of va~’tioss V and .4,~E £ V x v~ A pa th in G is an ordered sequsnce of ver tices connected by edges.
For ver tices x,y £ V let d~(x.y) denot, the length of a minimum length path
form z to y. If no such path exists, then d

0(x
,y) —

A binary tree is a directed graph that consists of either a single vertex
or a root x and edges between x and the root of each of two binary trees called
the left and right subtresg of z. A vertex x in a binary tree is a leaf if it
has no sons. I f H (V

~
Z) is a binary tree with r o o t r E y a n d l f &

P — (z1, . .. , X )  ~s a direct path from x1 — r to x0 — t , then P is called a
branch of L An anoestor trg. C — (V ,E) is a direct ed graph with the following
prop ertie s:

1) There exists a so~~set ~ E such tha t C • (V,E )  is a binary tree ;
2) If (x, y ) C E — E , t he ny i s an anc,stor o f z j f l G

Let C denot, the n x a rook—connected array of vertic es . If the vertic esU

of C0 are indexed by (i ,j ) for l�i,j �n, then , except for the obvious extremal
convention. , there are symeetric edges between (i j) and (i ,j+1) , (i+l,j).H For any directe d grap h C — (V ,E) , the notion of boundary makes sense.
L e t A E V .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3 (A) — (ycV—A : ZX€A such tha t (x y)cE)

Clearly, a CA) denotes th. set of vert ice, not in A which are reachab l, from A by

_ _ _ _ _ _ _ _ _ _ _  
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a single 
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By a simple improvement of a result from (1], we have the following 
____

Important property of arrays: 
__________

~ t) _ _ _ _ _ _ _ _ _

~~~~ 2: (Boundary L . a )  Let A be a set of vertices of Ga with IA ! s a212.
Then

2 1A J � J a ( A ) J 2 .

3. Graph Embedding

The following relation was defined in (1]. Let C — (V,E) and G* — (V*,I*)
be directed graphs, and let S,T > 0. Then C �~, T G* if there is a partial
function (called an embedding) •:V* • VU fA ) ,  of the nodes of C’ to the nodes of
C and a special node A , such that

1) 0 � J~~
1
(x) J � S for all x c V ;

2) For all x* E •~~(V) , if dc*(•(x*),y) c — for some y £ V , then there exists

7’ c • 1(y) such that dG*(z*,y*) �

If •(v* ) A , then we refer to v* a s a ~~~~~~e,,~jng ,k,~~ . If •(v* ) — v * A ,
then v~ is said to be a copy of v. Condition (1) states that there are at most
S copies of any vcV in G*. Condition (2) states tha t the embedding induces at
most a T—fold incre ase in path length.

Theorem 2: (1, Theorem 5.2] If S(n) , T(n ) are such that C s~, .~ .,. , .~ G* fora
some ancestor tree G*, then

T(n) + log28(~) � lo$2n + Cl. (1)

The right hand sid. of inequality (1) cannot be improved , sinc, with S(n) ~~l,
the construc tion of (2] shows that

T(n) - 0(10.?)

The notion of boundary used here corresponds to the coboimdary of (1].

_ _ _ _ _  _ _  
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is achievable for any o vert : grapb Theorem 1, bow~~~r , giv*s only a linear

boumd on 8(n) , and it has been conjectured that a non—polynomial lower bound on

8(n) exists. in the next section we obtain such ~ bound.

4. Main Theorem

In this section , we obtain the following improve ment of Theore m 1:

Th.o~’.m 2: If G* is an ancestor tree and G~~~~,~~~q.~~~~G*, thefla

T(n) + log2lo$2S(n) � loge — 0(log2log2n).

Proof : For notational convenience , let us syst atica ]ly confuse a graph with

its set of vertices, so that “z c C” and “x £ Vu mean the s~~ thing if G — (V,E).

We aasime C 
~~ 

C’ via an ~~~.dding I. For any A’ £ C’, vs use ~(A’) to
a ,

denote the set of x G~ which are I—images of some x* € A*. Henceforth, we

aesi that C’ is a binary tree ; it will be obvious as we progress that if C’

contains ancestor •~~ea , then the proof is co~~letely unaffected.

Path of G ~. T h en P i s an adnf.asible path if it

is constructed as follows: For each 4 (1~i�k), let denote the subtree of

4 containing 4+1,and let denote th. other subtree of 4; then either
a) •(R~) �

I -H or

b) � n2/4.

Note that th, def inition of admissjble path is more general than that used in (1).

Indeed , it i. by proving the existence of many such ad.issjble paths that we obtain

our result.

V. fix an arbitrary admi.~~ble path P — (4,..., z{) and define for I — 1,. . . , k

the •ub tres • 14 u (4). We shall say that is mail if ,(H~~1

oth rwise is said to be large. Let

- ~~. 
. - . ..— — ________________
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is small

in particular , 0k is the set of vertices In Ga which have copies in s~~~ small. M
~
.

Lermia 3: For sotae j ,

2
~~— �  IDJ 1 

~T’

Proof : We need only show that there exists an integer j such that I � n2/4 ,

since if j is the least such integer, then (aasi lng ID0! — 0)

a2 2
lD~I s ID~..,1 I + •(H~l) I c + — n2/2 .

We claim that II(R!) I � n2/4. For suppose otherwise, whence I(L!)I � 10(9) ! —

by the definition of an admissible path. Nov

— U

so that

fl2 — 10CC’) ! � 0(14)1 + 1 + I.(9)1 � 210(9) 1 + 1,

and thus

1 0CR!)! � n2/4.

Let j be such that I,(R~) )  — 0, and let i be the lar gest integer such that

10(9) ! n2/4. Then

10(9)1 c n2/4, for £ — i+l,...,j.

Hence,

~ 1 + I0(14)I � 1 + 10(9) 1 1 + n2/ 4 for all £ — i+l,...,n.

• But then each such 9 is small , and therefore

But by the definition of i, IDJ I � n2/4. 0

~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~ ~~~
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Letting k satisfy L e a  3, vs find that Dk satisfies the hypothesis of the
Boundary Limes, so that

13(Dk)I � 2IDk I 1”2 �.
~~

Lemna 4: If is the number of larg . trees 9 along an admissible path P, then

Proof : Let

— (v* c H?, large: for some small H! and z* € Hj~ dc(x*,v*) � TJ .

i.e., 
~T is the set of vertices in large H? which are reachable from some node in

a small H~r by a path of length at moat T. We show that 13(D•a)J � 1Q1,l by defining
an injection g : a(Dk) • Q~. For y £ 3(D.~), choose some x £ D k adjacent to y.
Let x* be a copy of x in a small H~, let y* be a copy of y such that dG*(x*,y*) �

and set g(y) — y*. Since Og(y) — •(y’) — y, g is one—one. Thus , from (2) ,

� J a (D .~) J  
~~~~~~

but

I (H? : 9 large)

€ 
~?‘ large; v~ within distance T of root of

~~L .2 ~ 0

To complete the proof , we now show that there ar e at least 2 admi ssible
paths. Since each adaiasibl. path corresponds to a diatinct leaf of G* and
C � G*, we hav. -
a S,T

a -T
2 

~~ 2 
I 0~~ (V) J � SIVJ • Sn2 a

and the result follows.

Without loss of generality, we ass~~~ that no leaf of C’ is a bookkeeping node .

-
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Lenna 5: There exist at least 2 admissible paths, where — 2 T

•

Proof: We prove the result by showing that at least £~~~ independent binary

choices must be made to construct an arbitrary admissible path. Conside r a

partial admissible path x1,...,x~ (L e., the initial segment of an admissible

path) . If only one aubtree of is large , then the admissible path can only

be extended down that subtree. However , if both subtrees are large , then the

admissible path can be extended down either subtree without violating the

condition (a—b) . By Lemea 4, there a~ i at least £~~ large subtrees along every

admissible path , and , for each such subtree , there is a node in the admissible

path with two large subtrees . (I]

By using the modeling strategy detailed in El), we obtain the following:

Corollary: For each n there is an a statement goto program Q such that for any

8tructured aimulation of Q either

1) the simulating program is slower than Q by a factor of c1 log a, or
or

— 2) the simulating program is larger than Q by a factor of 2

An interesting interpretation of this result as a space—time tradeoff is

shown in Figure 1, which illustrates , for fixed a > 0,

S(T ,n) ~ ~n/2

For any fixed value K � T � c1 log a , limiting the loss of time efficiency in

the simulating program, the shaded region of Figure 1 shows the only values of

S,T which are achievable.
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